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In this work we present an efficient procedure to evaluate effective pair potentials, compatible with “experi-
mental” structure factors, using a Monte Carlo simulation scheme. The procedure does not require the use of
inverse Fourier transforms and is robust and rapidly convergent. As a test case the structure factor of liquid
Selenium obtained from a Tight-Binding Molecular Dynamics simulation is inverted to obtain an effective pair
potential and, as a by-product, the pair distribution function. The inversion procedure yields a pair structure in
perfect agreement with the original molecular dynamics calculations and the analysis of the triplet structure and
the dynamics also illustrates the limitations of the use of pair potentials in the description of liquids with
strongly directional bonding, such as the covalent liquid Selenium.
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I. INTRODUCTION

The determination of the Hamiltonian of a given system
from its microscopic structure—what is known as the inverse
problem—remains one of the crucial challenges in the phys-
ics of disordered condensed matter. In the last two decades
numerous approaches have been formulated, most of them
based on the prior knowledge of the microscopic structure in
terms of the pair distribution function(PDF) gsrd [1–7]. The
most efficient procedures resort to some sort of simulation
method[5–7] to obtain an effective pair potential compatible
with the PDF used as input. This quantity, however, is not
directly accessible from the experiment. One must resort to
the evaluation of inverse Fourier transforms(i.e., k→ r)
of the structure factorsSskd obtained from x-ray or neutron
diffraction experiments. This inverse Fourier transformation
is plagued with numerical inaccuracies, mainly stemming
from the limited k-range for which the scattering data are
available. The extension of Soper’s method[6] to incorporate
structure factors as input[8], although somewhat different in
its formulation, also requires the evaluation of an inverse
Fourier transform. On the other hand, the original Reverse
Monte Carlo (RMC) technique[9], even if it is perfectly
suitable to generate microscopic configurations compatible
with the inputSskd, is not a solution of the inverse problem.
Moreover, it seems to be too prone to predict structures with
an excess of entropy[10]. This will not be the case in meth-
ods based on the use of effective potentials, in which the
energy is constrained[8].

Quite recently Toth[11,12] has proposed an extension of
the method of Lyubartsev and Laaksonen[7], which uses as
input dataSskd, involving only direct Fourier transforms(i.e.,
r →k). In this procedure just the PDF of the simulated
sample has to be Fourier transformed, and this can be reli-
ably done if the sample size is sufficiently large. Toth’s
method in its last version[12] seems powerful and efficient,
but in each refinement step it requires the numerical solution
of a set of nonlinear equations withn-unknowns,n being the
number of parameters that determine the potential—if its
functional form is known—or the number of data points for
which the tabulated effective pair potential is to be evaluated.

This latter case, which is the most common situation, consti-
tutes a highly nontrivial numerical problem.

The purpose of this paper is to show that a robust, simple,
and computationally inexpensive algorithm can be con-
structed on the basis of a recently proposed method for the
determination of effective pair potentials from PDFs[13]. In
order to illustrate the capabilities of this new algorithm, it
will be put to an stringent test, the inversion of the structure
factor of liquid Selenium computed from a Tight-Binding
Molecular Dynamics(TBMD) simulation [14]. It will be
shown that the proposed method can reliably invert the struc-
ture factor even with truncatedk-range, rendering a pair
structure in perfect accordance with that of the TBMD simu-
lation. The limitations of the use of pair potentials in systems
with strong directional bonding like this, will in turn be made
apparent when calculating other properties, such as the vi-
brational spectrum or the three-particle distribution function.

In practice we will deal with the problem of the simulta-
neous determination of the PDF and the effective pair poten-
tial for a given system, whose structure factorSskd is known.
For the sake of simplicity, we will focus here on a mono-
atomic system. Generalizations to molecular systems are
possible provided that the different partial structure factors
are known. The structure factor[15] of a monoatomic(and
isotropic) system is given by

Sskd = 1 + 4prE
0

`

dr r 2hsrd
sinskrd

kr
, s1d

wherehsrd;gsrd−1, r stands for the distance andr is the
density. Let us assume that we know the experimental static
structure factor of a certain system at given conditions of
density and absolute temperatureT; our aim will then be to
determine an effective pair potentialVsrd that accounts for
the pair structure of the system under consideration. In other
words, if we perform a computer simulation of a condensed
phase whose interactions can be described byVsrd at the
same thermodynamic conditions, then the calculated struc-
ture factorSsimskd must be equal(within error bars) to the
experimental result. In what follows, how to achieve this
goal will be explained in detail.
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II. NUMERICAL PROCEDURE

Let us suppose that we have a certain number of experi-
mental data for the structure factor(together with a corre-
sponding estimation of their error bars): fki ,Sskid ,DSskidg
with i =1,2, . . . ,Nk, or in shorter notationski ,Si ,DSid, for a
system with densityr. We will represent the effective inter-
action potential as a 3D Fourier sum of the form

bVsrd = o
i=1

Nk

ui
sinskird

kir
, s2d

whereb=1/kBT as usual. Thus, our inversion problem con-
sists in determining the values of the coefficientsui, si
=1,2, . . . ,Nkd such that(2) leads to a simulatedSsimskd con-
sistent with the experimental values. In practice, the effective
interactionbVsrd will be handled in terms of discrete values
calculated atr i = iDr, which will then be interpolated for ar-
bitrary r, and will be truncated according to the simulation
box size.

The inversion procedure makes use of the Metropolis
Monte Carlo method[16,17] and is divided in several stages.
At each stage we will be performing changes in the coeffi-
cientsui in order to achieve the matching between the input
structure factor and that obtained within the simulation. Such
changes will be smaller as we advance in successive stages.
The length of the simulation run on each stage will depend
on the fulfillment of convergence criteria applied to the
simulated structure factor when compared to the inputSskd.
After a cycle(N translation attempts, beingN the number of
particles) of simulation we compute an instantaneous struc-
ture factorSinstskd by performing the Fourier transformation
of the instantaneous PDF,ginstsrd. These data are accumu-
lated into the corresponding functions of the stage. The
Sinstskid are determined as

Sinstskid = 1 + 4prE
0

rc

dr r 2fginstsrd − 1g
sinskird

kir
, s3d

where rc depends on the system size. If the sample size is
reasonably large one can rely on the use of a direct Fourier
transformation like the one of Eq.(3). For particularly in-
volved systems(some liquid metals exhibiting a marked
long-range structure in the PDF), it is possible resort to an
extension method of the type devised by Verlet[18], al-
though with present-day computers one can simply increase
the sample size. For the case studied here, we found no sig-
nificant differences between the extension procedure and the
direct Fourier transformation. Now, the new values of the
coefficientsui are given[13] by

ui
new= ui

old + ls
Sinstskid − Si

DSi
kDSl, s4d

where

kDSl =
1

Nk
o
i=1

Nk

DSi , s5d

and ls is a parameter that depends on the stage,s, of the
calculation. With the new values of the coefficientsui it is

possible to build up the new effective potential, by means of
Eq. (2). After each block of a given number of simulation
cycles, the fulfillment of the following convergence criterion
is checked

1

Nk
o
i=1

Nk FSsskid − Si

DSi
G2

, h, s6d

where the value of the convergence parameterh is predeter-
mined(with values typicallyø1, see Sec. III for actual val-
ues), and Ssskd represents the accumulated structure factor
through the whole stage. If Eq.(6) is fulfilled, the procedure
initiates the subsequent stage, which starts with the current
values of the coefficientsui. On the new stage,s+1, the
parameterl is given by

ls+1 = als = asl1, s7d

with 0,a,1.
As starting point we have chosenui =0, for all i. The

initial choice corresponds to a system of noninteracting par-
ticles. Other initial guesses are possible, and it is likely that
initial solutions closer to the actual effective potential will
speed up the convergence of the method. As the simulation
evolves, an effective pair potential is expected to develop.
Such a situation makes it convenient to introduce a mecha-
nism to control the maximum displacement parameterdxmax
of the single particle MC moves[16], in order to keep a
reasonable acceptance ratio of trial configurations. This idea
can be put into practice by computing on each block of the
procedure the fraction of accepted movesXA. After each
block we can slightly modify the value ofdxmax in order to
push the system toward a certain predetermined target accep-
tance ratio(e.g., 1 /2), for instance using

ln dxmax
new= ln dxmax

old + tssXA − 1/2d; ts ù 0, s8d

where the value of the multipliert depends on the simulation
stage.

It is known that the change of the parameterdxmax during
the averaging configurations of a simulation can break the
detailed balance fulfillment[17]. In the present case such a
circumstance does not seem an important problem(at least in
the first stages of the procedure) because the change of the
running effective pair potential also implies the violation of
detailed balance. Nevertheless, we expect to approach equi-
libriumlike conditions in successive stages, therefore, it
seems sensible either to reduce the value oft when starting
new stages or, eventually, eliminate thedxmax updating de-
vice after a number of initial stages. We have chosen the first
possibility by using

ts = as−1t1. s9d

Using this scheme and provided that the simulation results
converge at the different stages(which we expect to happen
if the effective pair potential exists, see[13]), the detailed
balance will become practically accomplished in the last
stages of the procedure, since the changes in bothui coeffi-
cients anddxmax along each stage will become vanishingly
small.
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III. APPLICATION

The “experimental” structure factor has been calculated
by means of a TBMD simulation carried out on the micro-
canonical ensemble, with 416 particles atr=0.0295 Å−3, and
a time step of 1 fs. For the present model this state corre-
sponds to a high-density liquid at a pressure of 5.1±1.4 kbar,
well away from the triple point. The system was equilibrated
for 10 ps after melting the initial configuration, and the pro-
duction run included 20 ps more. The average temperature
was 570 K. From this calculation we evaluated the pair dis-
tribution function up to a distance 12.1 Å. At this distance
gsrd<1 within experimental error, and one may expect the
corresponding structure factor to be accurate enough. This
latter quantity is tabulated ink-space with a gridDk
=0.12272 Å−1. Block averages were used to estimate the er-
rors in bothgsrd andSskd. This function is plotted in Fig. 1
and the corresponding pair distribution is represented in Fig.
2. We note in passing that the high and narrow first peak of
gsrd simply results from the presence of covalent bonds in
the sample.

Using the TBMD results of the PDF we have applied the
inversion method proposed in Ref.[13] (Case A) (with con-
vergence parameterh=0.10). Then we have inverted the
structure factor following the scheme proposed in this work,
using a number of stagesNs=30, l1=10.0, a=0.75, andh
=0.10. In order to analyze the effect of truncatingSskd we
have run the procedure using three different values ofNk:
Case B:Nk=326, kmax.40.0 Å−1, Case C:Nk=122, kmax
.15.0 Å−1, and Case D:Nk=81,kmax.10.0 Å−1. In all cases
the number of particles wasN=500.

In Fig. 3 we show the results of the effective potentials
evaluated using the four alternatives indicated above. The
first conclusion that can be extracted from Fig. 3 is that the
main differences between the results are located at short dis-
tances. Such differences do not appear to be relevant, since

the interaction potential is very high in this range and no
important contributions to the structure of the fluid are ex-
pected. On the other hand, it is remarkable the excellent
agreement between the different results forr ù2.1 Å. In
principle, the agreement between Cases A and B, could be
expected since in both cases the “experimental” functions are
well represented taking into account their respective cutoffs.
However, for Cases C and D, the values ofkmax correspond
to a region of wave numbers where considerable structure is
still present(see Fig. 1). Nonetheless this lack of information
on the tails ofSskd seems to have little influence on the
relevant range of the effective potential.

The small differences between the results of the two types
of inversion(see Fig. 3) for large distances are probably due
to the boundary conditions. In the inversion ofgsrd we set a
cutoff distance ofrc.12.1 Å (according to the size of the
simulation box of the TBMD run), whereas its value in the
inversions usingSskd wasrc.12.82 Å. Note that in all cases
the resulting PDF(see Fig. 2) is practically indistinguishable
from the TBMD gsrd.

IV. QUALITY OF THE EFFECTIVE POTENTIALS

In order to analyze the ability of a pair interaction model
to give a correct account of various properties of the TB
model for liquid Se, we have run Molecular Dynamics simu-
lations using the effective potentials extracted from Cases A
and B, and compared the results with those of the TBMD
calculation. The extracted effective potentials are smoothed
with a least-squares piecewise cubic spline.

As expected, the radial distribution functions coming
from the pair interaction model were(within statistical er-
rors) equal to that evaluated in the TBMD calculation. Now,
if one goes beyond the pair structure, things start to look
different. In Fig. 4 we have plotted the three particle distri-

FIG. 1. Structure factor of liquid selenium evaluated from Fou-
rier transformation of the results ofgsrd obtained in the TBMD
simulation.

FIG. 2. PDF for liquid Se. The solid curve represents the TBMD
results, the dotted line corresponds to models A–D(see Sec. III and
Fig. 3 for details of the models), which are indistinguishable at the
scale of the figure.
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bution functiongs3dsr ,s,ud, calculated for an isosceles con-
figuration withr =s=2.48 Å. This distance corresponds to the
first peak ingsrd. We observe that, whereas the TBMD triplet
distribution exhibits a single maximum at 100°, which is the
proper bond angle for the experimental liquid Se, the pair
potential presents an additional very marked maximum at
60°. This results from the fact that a pair potential cannot
prevent the formation of triplets of Se atoms in equilateral
triangular configurations. These Se3 clusters are absent from
the TBMD and the experimental results. If we now look at
the vibrational density of states depicted in Fig. 5, we ob-
serve that the overall shape of the curve is reasonably repro-
duced by the pair potential model, but the position of the
stretching band at 30 meV is underestimated, the bond bend-
ing band between 8–15 meV is less broad and finallyzs0d is
much overestimated. This latter feature simply reflects the

fact that the diffusion constant in the pair potential model is
much highers4.8310−9 m2/sd than that of the TB model
s1.2310−9 m2/sd. What is clear from these results is that the
atoms are less tightly bound in the pair potential model, by
which the diffusion constant is much higher and the bond
stretching band less energetic. A coordination analysis indi-
cates that whereas the TB model leads to an overall domina-
tion of doubly and singly coordinated atoms, isolated atoms
and threefold coordination are also important in the pair po-
tential models. Finally, it is worth pointing out that Cases A
and B (i.e., those obtained from thegsrd and theSskd inver-
sion, respectively) lead to identical vibrational dynamics as
can be seen in the coincidentzsEd curves in Fig. 5. This is
not surprising since the bond dynamics is essentially deter-
mined by the short- and medium-range structure of the po-
tential and in Fig. 3 can readily be seen that Cases A and B
are hardly distinguishable in the region 2 Å–6 Å.

FIG. 3. Effective pair potentials evaluated us-
ing inversion techniques. Case A{inversion of
gsrd following the method of[13]}: continuous
line. Case Bskmax=40 Åd: dashed line. Case C
skmax=15 Åd: filled circles. Case Dskmax=10 Åd:
white circles. In the right frame, only Cases A
and B are represented(since Cases C and D are
indistinguishable from Case B at the scale of the
figure).

FIG. 4. Three-particle distribution functiongs3dsr ,s,ud calcu-
lated for r =s=2.48 Å, nearest-neighbor distance in liquid Se. FIG. 5. Vibrational density of states for liquid Se.
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V. CONCLUSIONS

In summary, we have presented an efficient and simple
procedure to extract pair potentials from structure factors,
which incidentally determines the pair distribution function
without resorting to inverse Fourier transforms. The proce-
dure can easily incorporate additional input information,
such as thermodynamics(see Ref.[13]), in order to improve
the quality of the potential. On the other hand, the test case
chosen, liquid Se, illustrates the limitations intrinsic to the
use of pair potentials when one tries to model properties that
go beyond the pair structure in systems characterized by
strong directional bonding. In a forthcoming work it will be
shown that the method can be generalized to simultaneously

extract effective pair and triplet potentials, if information on
the three-body pair distribution is incorporated as input. This
will pave the way to the development of a systematic proce-
dure to reduce complex interactions, like those present in
biomolecules, which cannot be represented by mere effective
pair potentials.
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